Two Distinct Visual Motion Mechanisms for Smooth Pursuit: Evidence from Individual Differences
نویسندگان
چکیده
Smooth-pursuit eye velocity to a moving target is more accurate after an initial catch-up saccade than before, an enhancement that is poorly understood. We present an individual-differences-based method for identifying mechanisms underlying a physiological response and use it to test whether visual motion signals driving pursuit differ pre- and postsaccade. Correlating moment-to-moment measurements of pursuit over time with two psychophysical measures of speed estimation during fixation, we find two independent associations across individuals. Presaccadic pursuit acceleration is predicted by the precision of low-level (motion-energy-based) speed estimation, and postsaccadic pursuit precision is predicted by the precision of high-level (position-tracking) speed estimation. These results provide evidence that a low-level motion signal influences presaccadic acceleration and an independent high-level motion signal influences postsaccadic precision, thus presenting a plausible mechanism for postsaccadic enhancement of pursuit.
منابع مشابه
Discrimination contours for the perception of head-centered velocity.
There is little direct psychophysical evidence that the visual system contains mechanisms tuned to head-centered velocity when observers make a smooth pursuit eye movement. Much of the evidence is implicit, relying on measurements of bias (e.g., matching and nulling). We therefore measured discrimination contours in a space dimensioned by pursuit target motion and relative motion between target...
متن کاملDistinct spatial coordinate of visual and vestibular heading signals in macaque FEFsem and MSTd
Precise heading estimate requires integration of visual optic flow and vestibular inertial motion originating from distinct spatial coordinates (eye- and head-centered, respectively). To explore whether the two heading signals may share a common reference frame along the hierarchy of cortical stages, we explored two multisensory areas in macaques: the smooth pursuit area of the frontal eye fiel...
متن کاملUnaffected smooth pursuit but impaired motion perception in monocularly enucleated observers
The objective of this paper was to study the characteristics of closed-loop smooth pursuit eye movements of 15 unilaterally eye enucleated individuals and 18 age-matched controls and to compare them to their performance in two tests of motion perception: relative motion and motion coherence. The relative motion test used a brief (150 ms) small stimulus with a continuously present fixation targe...
متن کاملThe neuronal basis of on-line visual control in smooth pursuit eye movements
Smooth pursuit eye movements allow us to maintain the image of a moving target on the fovea. Smooth pursuit consists of separate phases such as initiation and steady-state. These two phases are supported by different visual-motor mechanisms in cortical areas including the middle temporal (MT), the medial superior temporal (MST) areas and the frontal eye field (FEF). Retinal motion signals are r...
متن کاملContextual effects on smooth-pursuit eye movements.
Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 54 شماره
صفحات -
تاریخ انتشار 2007